A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization
نویسندگان
چکیده
Algebraic multigrid methods solve sparse linear systems Ax = b by automatic construction of a multilevel hierarchy. This hierarchy is defined by grid transfer operators that must accurately capture algebraically smooth error relative to the relaxation method. We propose a methodology to improve grid transfers through energy minimization. The proposed strategy is applicable to Hermitian, non-Hermitian, definite, and indefinite problems. Each column of the grid transfer operator P is minimized in an energy-based norm while enforcing two types of constraints: a defined sparsity pattern and preservation of specified modes in the range of P . A Krylov-based strategy is used to minimize energy, which is equivalent to solving APj = 0 for each column j of P , with the constraints ensuring a nontrivial solution. For the Hermitian positive definite case, a conjugate gradient (CG-)based method is utilized to construct grid transfers, while methods based on generalized minimum residual (GMRES) and CG on the normal equations (CGNR) are explored for the general case. The approach is flexible, allowing for arbitrary coarsenings, unrestricted sparsity patterns, straightforward long-distance interpolation, and general use of constraints, either user-defined or auto-generated. We conclude with numerical evidence in support of the proposed framework.
منابع مشابه
Algebraic multigrid methods based on compatible relaxation and energy minimization
This paper presents an adaptive algebraic multigrid method for the solution of positive definite linear systems arising from the discretizations of elliptic partial differential equations. The proposed method uses compatible relaxation to adaptively construct the set of coarse variables. The nonzero supports for the coarse-space basis is determined by approximation of the so-called two-level “i...
متن کاملMultilevel Algebraic Elliptic Solvers
We survey some of the recent research in developing multilevel algebraic solvers for elliptic problems. A key concept is the design of a hierarchy of coarse spaces and related interpolation operators which together satisfy certain approximation and stability properties to ensure the rapid convergence of the resulting multigrid algorithms. We will discuss smoothed agglomeration methods, harmonic...
متن کاملAn Energy-minimizing Interpolation for Robust Multigrid Methods
We propose a robust interpolation for multigrid based on the concepts of energy minimization and approximation. The formulation is general; it can be applied to any dimensions. The analysis for one dimension proves that the convergence rate of the resulting multigrid method is independent of the coeecient of the underlying PDE, in addition to being independent of the mesh size. We demonstrate n...
متن کاملApplication of an Energy-minimizing Algebraic Multigrid Method for Subsurface Water Simulations
Efficient methods for solving linear algebraic equations are crucial to creating fast and accurate numerical simulations in many applications. In this paper, an algebraic multigrid (AMG) method, which combines the classical coarsening scheme by [19] with an energy-minimizing interpolation algorithm by [26], is employed and tested for subsurface water simulations. Based on numerical tests using ...
متن کاملSmoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems
We develop a smoothed aggregation-based algebraic multigrid solver for high-order discontinuous Galerkin discretizations of the Poisson problem. Algebraic multigrid is a popular and effective method for solving the sparse linear systems that arise from discretizing partial differential equations. However, high-order discontinuous Galerkin discretizations have proved challenging for algebraic mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011